Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Med Virol ; 95(2): e28444, 2023 02.
Article in English | MEDLINE | ID: covidwho-2263443

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). Though many methods have been used for detecting SARS-COV-2, development of an ultrafast and highly sensitive detection strategy to screen and/or diagnose suspected cases in the population, especially early-stage patients with low viral load, is significant for the prevention and treatment of COVID-19. In this study, a novel restriction endonuclease-mediated reverse transcription multiple cross displacement amplification (MCDA) combined with real-time fluorescence analysis (rRT-MCDA) was successfully established and performed to diagnose COVID-19 infection (COVID-19 rRT-MCDA). Two sets of specific SARS-COV-2 rRT-MCDA primers targeting opening reading frame 1a/b (ORF1ab) and nucleoprotein (NP) genes were designed and modified according to the reaction mechanism. The SARS-COV-2 rRT-MCDA test was optimized and evaluated using various pathogens and clinical samples. The optimal reaction condition of SARS-COV-2 rRT-MCDA assay was 65°C for 36 min. The SARS-COV-2 rRT-MCDA limit of detection (LoD) was 6.8 copies per reaction. Meanwhile, the specificity of SARS-COV-2 rRT-MCDA assay was 100%, and there was no cross-reaction with nucleic acids of other pathogens. In addition, the whole detection process of SARS-COV-2 rRT-MCDA, containing the RNA template processing (15 min) and real-time amplification (36 min), can be accomplished within 1 h. The SARS-COV-2 rRT-MCDA test established in the current report is a novel, ultrafast, ultrasensitive, and highly specific detection method, which can be performed as a valuable screening and/or diagnostic tool for COVID-19 in clinical application.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Reverse Transcription , COVID-19 Testing , DNA Restriction Enzymes/genetics , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics
2.
Sci Rep ; 11(1): 11773, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1258597

ABSTRACT

Since the first report of SARS-CoV-2 in China in 2019, there has been a huge debate about the origin. In this work, using a different method we aimed to strengthen the observation that no evidence of genetic manipulation has been found by (1) detecting classical restriction site (RS) sequence in human SARS-CoV-2 genomes and (2) comparing them with other recombinant SARS-CoV-like virus created for experimental purposes. Finally, we propose a novel approach consisting in the generation of a restriction endonucleases site map of SARS-CoV-2 and other related coronavirus genomes to be used as a fingerprint to trace the virus evolution.


Subject(s)
Biological Evolution , DNA Barcoding, Taxonomic/methods , DNA Restriction Enzymes/genetics , SARS-CoV-2/genetics , Animals , Chiroptera/virology , DNA Restriction Enzymes/metabolism , Genetic Markers , Genome, Viral , Humans , Restriction Mapping , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL